Yadanabon University Research Journal, 2019, Vol-10, No. 1

Conformal Transformation and it's Applications

Nilar Thein ${ }^{*}$

Abstract

This paper investigates flow past a flat plate and two-dimensional irrotational motion of fluid due to singularities between two fixed boundaries. The flow past a flat plate is obtained by using Joukowski transformation. It is also shown by examples that the conformal transformation can make a problem of irrotational flow treatable by converting an awkwardly shaped boundary into one of the simple forms. Keywords: flat plate, Joukowski transformation, conformal transformation, singularities.

1. Conformal Transformation

Suppose that z and ζ are two complex variables defined by $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ and $\zeta=\xi+\mathrm{i} \eta$ where $\mathrm{x}, \mathrm{y}, \xi, \eta$ are real variables. Suppose that z describes a certain curve C in the z -plane and ζ is related to z by means of the transformation $\zeta=f(z)$ where $f(z)$ is analytic.

If $f(z)$ is a single-valued function of z, then to each point in the z-plane, we can obtain a corresponding point in the ζ-plane. In this way, the curve C in the z-plane may be mapped into a curve C^{\prime} in the ζ-plane.

(z - plane)

Figure 1
Suppose that the function $\mathrm{f}(\mathrm{z})$ is analytic. Let $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ be neighboring points in the z plane such that $\mathrm{OP}=\mathrm{z}, \mathrm{OQ}=\mathrm{z}+\delta \mathrm{z}_{1}, \mathrm{OR}=\mathrm{z}+\delta \mathrm{z}_{2}$.

Figure 2
Under the transformation $\zeta=f(z)$, suppose that P, Q, R, map into the points $P^{\prime}, Q^{\prime}, R^{\prime}$ respectively in the ζ-plane, where $\mathrm{OP}^{\prime}=\zeta, \mathrm{OQ}^{\prime}=\zeta+\delta \zeta_{1}, \mathrm{OR}^{\prime}=\zeta+\delta \zeta_{2}$. It is assumed that

[^0]$\left|\delta z_{1}\right|,\left|\delta z_{2}\right|,\left|\delta \zeta_{1}\right|,\left|\delta \zeta_{2}\right|$ are small. Since $f(z)$ is analytic, $\frac{d \zeta}{d z}$ is unique at P. Thus, to the first order of smallness, $\frac{\delta \zeta_{1}}{\delta \mathrm{z}_{1}}=\frac{\delta \zeta_{2}}{\delta \mathrm{z}_{2}}$ (or) $\frac{\delta \zeta_{1}}{\delta \zeta_{2}}=\frac{\delta \mathrm{z}_{1}}{\delta \mathrm{z}_{2}}$.
\[

$$
\begin{equation*}
\text { Therefore, } \quad\left|\frac{\delta \zeta_{1}}{\delta \zeta_{2}}\right|=\left|\frac{\delta z_{1}}{\delta z_{2}}\right| \text {, } \tag{1}
\end{equation*}
$$

\]

\arg

$$
\begin{equation*}
\delta \zeta_{1}-\arg \delta \zeta_{2}=\arg \delta \mathrm{z}_{1}-\arg \delta \mathrm{z}_{2} \tag{2}
\end{equation*}
$$

and $\quad \delta \zeta_{1}=\frac{\delta \zeta_{1}}{\delta \mathrm{z}_{1}} \delta \mathrm{z}_{1}$.
Therefore, $\left|\delta \zeta_{1}\right|=\left|\frac{\delta \zeta_{1}}{\delta \mathrm{z}_{1}}\right|\left|\delta \mathrm{z}_{1}\right|$ and $\arg \delta \zeta_{1}=\arg \left(\frac{\delta \zeta_{1}}{\delta \mathrm{z}_{1}}\right)+\arg \delta \mathrm{z}_{1}$. So in the neighborhood of the point P^{\prime} distances are multiplied by the value of $\left|\frac{\delta \zeta_{1}}{\delta z_{1}}\right|$ at P; this is called the magnification of the transformation.

From (2) and (3), we obtain $\frac{\mathrm{P}^{\prime} \mathrm{Q}^{\prime}}{\mathrm{P}^{\prime} \mathrm{R}^{\prime}}=\frac{\mathrm{PQ}}{\mathrm{PR}}$ and $\angle \mathrm{R}^{\prime} \mathrm{P}^{\prime} \mathrm{Q}^{\prime}=\angle \mathrm{RPQ}$. Thus the triangles $R^{\prime} P^{\prime} Q^{\prime}$ and $R P Q$ are similar. So an infinitesimal triangle in the z-plane maps into a similar infinitesimal triangle in the ζ-plane. Thus the mapping preserves the angles and the similarity of corresponding infinitesimal triangles. Such a transformation which has these properties is said to be conformal.
Example: Transformation of $w=z^{2}$

Figure 3

1.1 Applications of Conformal Transformation

Suppose there is a two-dimensional incompressible flow in the z-plane. On applying the conformal transformation $\zeta=\mathrm{g}(\mathrm{z})$, the new plane of flow becomes the ζ-plane. Let ρ be the density of the fluid in both cases. Suppose further that C is a rigid boundary in the z-plane which maps into the curve C^{\prime} in the ζ-plane. Let the complex velocity potential for the z plane be $\mathrm{w}=\mathrm{f}(\mathrm{z})=\phi+\mathrm{i} \psi$ where the real functions $\phi(\mathrm{x}, \mathrm{y}), \psi(\mathrm{x}, \mathrm{y})$ are the usual velocity potential and stream function respectively. By means of the transformation $\zeta=\mathrm{g}(\mathrm{z})$ it can
express w as a function $\overline{\mathrm{f}}(\zeta)=\bar{\phi}+\mathrm{i} \bar{\psi}$ where $\bar{\phi}=\bar{\phi}(\xi, \eta), \bar{\psi}=\bar{\psi}(\xi, \eta)$. At the corresponding points t, z, the complex potential w takes the same value so that $\phi=\bar{\phi}, \psi=\bar{\psi}$.

Now C is a rigid boundary in the z -plane and so also a streamline for which $\psi=$ constant. Thus along $\mathrm{C}^{\prime}, \bar{\psi}=$ constant. Therefore, C^{\prime} is a streamline and also a rigid boundary. Therefore, under the conformal transformation, points on the streamline through a given point in the z -plane will transform into points on the stream line through the corresponding point in the ζ-plane. In particular, the boundaries of the fluid in z-plane will transform the boundaries in ζ-plane.

1.2 Transformation of source and sink

Figure 4
Suppose there is a source of strength m at P in the z -plane surrounded by a small closed curve C. By the definition of source, the flow across C is $2 \pi \mathrm{~m} \rho$. Under the conformal transformation the point P transforms into the point P^{\prime} in the ζ-plane and the small closed curve C surrounding P in the z-plane transforms into a small closed curve C^{\prime} surrounding P^{\prime} in the $\quad \zeta$-plane. The flow across C is given in terms of the stream function by $-\rho \int_{C} d \psi$. Since each point on C^{\prime} corresponds to one and only one point on C, this is equal to $-\rho \int_{C^{\prime}} d \psi$ taken in the same sense. So, the flow across C^{\prime} is $2 \pi \mathrm{~m} \rho$ and this will be the same for any small closed curve surrounding P^{\prime}. Therefore a source transforms into an equal source at the corresponding point. Similarly if there is a sink of strength $(-\mathrm{m})$ at P in the z -plane, then it transforms into an equal sink at the corresponding point in the ζ-plane.

In particular, the boundaries of the fluid in z-plane will transform the boundaries in ζ plane. And a source, sink or vortex at a particular point in the z - plane will transform an equal source, sink or vortex at the corresponding point in the ζ-plane. The kinetic energy of both corresponding regions is equal.

2. Joukowski Transformation

It is the most common conformal transformation which is given by

$$
\begin{equation*}
\zeta=\mathrm{f}(\mathrm{z})=\mathrm{z}+\frac{\mathrm{a}^{2}}{\mathrm{z}}, \tag{4}
\end{equation*}
$$

where a is constant. The transformation changes z -plane to ζ-plane where $\mathrm{z}=\mathrm{x}+\mathrm{iy}$. Then,

$$
\zeta=\xi+\mathrm{i} \eta=\mathrm{z}+\frac{\mathrm{a}^{2}}{\mathrm{z}},
$$

Yadanabon University Research Journal, 2019, Vol-10, No. 1

$$
\begin{equation*}
=x+i y+\frac{a^{2}(x-i y)}{(x+i y)(x-i y)} \tag{5}
\end{equation*}
$$

Therefore, $\quad \xi=x\left(1+\frac{a^{2}}{x^{2}+y^{2}}\right), \quad \eta=y\left(1-\frac{a^{2}}{x^{2}+y^{2}}\right)$.
If $x^{2}+y^{2}=r^{2}$, the circle of radius r is in the z-plane, then

$$
\begin{equation*}
\frac{\xi^{2}}{\left(r+\frac{a^{2}}{r}\right)^{2}}+\frac{\eta^{2}}{\left(r-\frac{a^{2}}{r}\right)^{2}}=1, \text { in the } \zeta \text {-plane. } \tag{6}
\end{equation*}
$$

Therefore by using Joukowski transformation, a circle on the z-plane of radius r transforms into an ellipse with major axis $\mathrm{A}=\mathrm{r}+\frac{\mathrm{a}^{2}}{\mathrm{r}}$ and minor axis $\mathrm{B}=\mathrm{r}-\frac{\mathrm{a}^{2}}{\mathrm{r}}$ on the ζ-plane.

z-plane

ζ - plane

In the special case, when $r=a$, the ellipse becomes an infinitely thin plate of length 4 a in the $\quad \zeta$-plane, since $\mathrm{A}=2 \mathrm{a}$ and $\mathrm{B}=0$. So, the Joukowski transformation changes the circle into a flat plate. And then the circle of radius a in the z-plane is called the Joukowski transformation circle.

2.1 Flow Past a Flat Plate with Circulation

Figure 6
The complex potential for a fixed circular cylinder radius a in a stream whose undisturbed spped U makes an angle α with the X -axis and about which there is a circulation κ is

$$
\begin{equation*}
\mathrm{W}=\mathrm{U}\left(\mathrm{ze}^{\mathrm{i} \alpha}+\frac{\mathrm{a}^{2} \mathrm{e}^{-\mathrm{i} \alpha}}{\mathrm{z}}\right)+\frac{\mathrm{i} \kappa}{2 \pi} \log \mathrm{z} \tag{7}
\end{equation*}
$$

Yadanabon University Research Journal, 2019, Vol-10, No. 1
If the transformation $\zeta=\frac{\mathrm{a}^{2}}{\mathrm{z}}+\mathrm{z}$ is applied to the whole area outside the circle in the $\mathrm{z}-$ plane, it transforms into the whole of the ζ-plane with a rigid barrier between the points $(\pm 2 \mathrm{a}, \mathrm{O})$. The problem then becomes that a flat plate of width 4 a , about which there is circulation, in a stream U inclined at α to the plate. Solving for z in terms of ζ,
$\mathrm{z}=\frac{1}{2}\left\{\zeta+\sqrt{\zeta^{2}-4 \mathrm{a}^{2}}\right\}$ and $\frac{\mathrm{a}^{2}}{\mathrm{z}}=\frac{1}{2}\left\{\zeta-\sqrt{\zeta^{2}-4 \mathrm{a}^{2}}\right\}$.
Hence the complex potential (7) becomes

$$
\begin{aligned}
\mathrm{W}=\frac{1}{2} \mathrm{U}[& {\left.\left[\zeta \zeta+\sqrt{\zeta^{2}-4 \mathrm{a}^{2}}\right\} \mathrm{e}^{\mathrm{i} \alpha}+\left\{\zeta-\sqrt{\zeta^{2}-4 \mathrm{a}^{2}}\right\} \mathrm{e}^{-\mathrm{i} \alpha}\right] } \\
& +\frac{\mathrm{i} \kappa}{2 \pi} \log \frac{1}{2}\left\{\zeta+\sqrt{\zeta^{2}-4 \mathrm{a}^{2}}\right\} . \\
=\mathrm{U} & {\left[\zeta \cos \alpha+\mathrm{i}\left\{\sqrt{\zeta^{2}-4 \mathrm{a}^{2}}\right\} \sin \alpha\right] } \\
& +\frac{\mathrm{i}}{2 \pi} \log \frac{1}{2}\left\{\zeta+\sqrt{\zeta^{2}-4 \mathrm{a}^{2}}\right\},
\end{aligned}
$$

neglecting a constant.
The circulation about the plate is given by the decrease in the velocity potential ϕ on describing a circuit round it, this is the same as the decrease in ϕ on describing the corresponding circuit about the cylinder, i.e., there is a circulation κ about the plate.

The velocity at any point can be written

$$
-\mathrm{U}+\mathrm{iV}=\frac{\mathrm{dW}}{\mathrm{~d} \zeta}=\frac{\frac{\mathrm{dW}}{\mathrm{dz}}}{\left(1-\frac{\mathrm{a}^{2}}{\mathrm{z}^{2}}\right)}
$$

The denominator vanishes when $\mathrm{z}= \pm \mathrm{a}$, i.e., $\zeta= \pm 2 \mathrm{a}$, therefore the velocity is infinite at both edges unless $\frac{d W}{d z}$ has a factor $(z+a)$ or $(z-a)$, when it will be finite at the corresponding edge.

$$
\frac{d W}{d z}=U\left(e^{i \alpha}-\frac{a^{2}}{z^{2}} e^{-i \alpha}\right)+\frac{i \kappa}{2 \pi z},
$$

if this is zero when $\mathrm{z}= \pm \mathrm{a}$, then $\kappa= \pm 4 \pi \mathrm{Ua} \sin \alpha$. Hence the velocity at the edge $\zeta=2 \mathrm{a}$ will be finite.

Example

A flat plate of infinite length and width L is placed in a current of incompressible fluid with its plane at an angle α to the undisturbed stream lines.

Yadanabon University Research Journal, 2019, Vol-10, No. 1

Figure 7
The circle of radius a on BOA as diameter transforms into the flat plate $\mathrm{B}^{\prime} \mathrm{A}^{\prime}$ of length 4a, by means of transformation $\zeta=\mathrm{z}+\frac{\mathrm{a}^{2}}{\mathrm{z}}$. Taking the centre of the circle as origin, the complex potential in z-plane is given by $W=U z e^{i \alpha}+\frac{\mathrm{Ua}^{2}}{\mathrm{z}} \mathrm{e}^{-\mathrm{i} \alpha}+\frac{\mathrm{i} \kappa}{2 \pi} \log \mathrm{z}$.

$$
\frac{\mathrm{dW}}{\mathrm{dz}}=\mathrm{Ue}^{\mathrm{i} \alpha}-\frac{\mathrm{Ua}^{2}}{\mathrm{z}^{2}} \mathrm{e}^{-\mathrm{i} \alpha}+\frac{\mathrm{i} \kappa}{2 \pi \mathrm{z}} .
$$

Stagnation points corresponding to $\mathrm{z}= \pm \mathrm{a}$ are given by $\frac{\mathrm{dW}}{\mathrm{dz}}=0$. Therefore $\kappa=4 \pi \mathrm{aU} \sin \alpha$.

By using the Blasiu's theorem,

$$
\begin{aligned}
X-i Y & =\frac{1}{2} i \rho \int\left(\frac{d W}{d \zeta}\right)^{2} d \zeta . \\
& =\frac{1}{2} i \rho \int\left\{\left(1+\frac{a^{2}}{z^{2}}+\ldots\right)\left(\mathrm{Ue}^{\mathrm{i} \alpha}-\frac{\mathrm{Ua}^{2} \mathrm{e}^{-\mathrm{i} \alpha}}{\mathrm{z}^{2}}+\frac{\mathrm{i} \mathrm{\kappa}}{2 \pi z}\right)^{2}\right\} \mathrm{dz} .
\end{aligned}
$$

By using Residue Theorem,

$$
\begin{aligned}
& \mathrm{X}-\mathrm{iY}=\frac{1}{2} \mathrm{i} \rho \frac{2 \mathrm{Uiкe}^{\mathrm{i} \alpha}}{2 \pi} 2 \pi \mathrm{i}=-\mathrm{i} \rho \kappa U \mathrm{e}^{\mathrm{i} \alpha} \\
& \mathrm{X}=\rho \kappa \mathrm{U} \sin \alpha=4 \pi \rho \mathrm{aU}^{2} \sin ^{2} \alpha \\
& \mathrm{Y}=\rho \kappa U \cos \alpha=4 \pi \rho \mathrm{aU}^{2} \sin \alpha \cos \alpha .
\end{aligned}
$$

The resultant force R is $4 \pi \rho \mathrm{aU}^{2} \sin \alpha$ and acting at angle, $\tan \theta=\frac{\mathrm{Y}}{\mathrm{X}}, \theta=\frac{\pi}{2}-\alpha$.
$\mathrm{N}=$ real part of $-\frac{1}{2} \rho \int\left(\frac{\mathrm{dW}}{\mathrm{d} \zeta}\right)^{2} \zeta \mathrm{~d} \zeta$

$$
=-\frac{1}{2} \rho \int \frac{\mathrm{z}+\frac{\mathrm{a}^{2}}{\mathrm{z}}}{1-\frac{\mathrm{a}}{\mathrm{z}^{2}}}\left(\frac{\mathrm{dW}}{\mathrm{dz}}\right)^{2} \mathrm{dz}
$$

Yadanabon University Research Journal, 2019, Vol-10, No. 1

$$
\begin{aligned}
& =\text { real part of }\left[-\frac{1}{2} \rho\left(2 U^{2} a^{2} e^{2 i \alpha}-\frac{\kappa^{2}}{4 \pi^{2}}-2 U^{2} a^{2}\right) 2 \pi i\right] \\
& =2 \pi \rho U^{2} a^{2} \sin 2 \alpha=\frac{\pi}{8} \rho L^{2} U^{2} \sin 2 \alpha .
\end{aligned}
$$

3. Flow Due to a Source between Two Fixed Boundaries

z -plane

Figure 8
Consider a source m at the point z_{0} in the fluid bounded by the lines $\theta=0$ and $\theta=\frac{\pi}{3}$. The conformal transformation $Z=z^{3}$ where $z=r e^{i \theta}$ from z-plane transform to Z-plane. The boundaries $\theta=0$ and $\theta=\frac{\pi}{3}$ in z-plane transform to $\Theta=0$ and $\Theta=\pi$ (real axis) in Z-plane. The point z_{0} in z-plane transforms to point Z_{0} in Z-plane such that $Z_{0}=z_{0}^{3}$ and the source m at z_{0} transforms to a source m at Z_{0}. Hence the image system with respect to real axis in Z plane consists of a source m at Z_{0} and a source m at Z_{0}^{\prime}. Therefore the complex potential for this motion is

$$
\begin{aligned}
\mathrm{W} & =-\mathrm{m} \log \left(\mathrm{Z}-\mathrm{Z}_{0}\right)-\mathrm{m} \log \left(\mathrm{Z}-\mathrm{Z}_{0}^{\prime}\right) \\
& =-\mathrm{m} \log \left(\mathrm{z}^{3}-\mathrm{z}_{0}^{3}\right)-\mathrm{m} \log \left(\mathrm{z}^{3}-\mathrm{z}_{0}^{\prime 3}\right) \\
\phi+\mathrm{i} \psi & =-\mathrm{m} \log \left\{\left(\mathrm{z}^{3}-\mathrm{z}_{0}^{3}\right)\left(\mathrm{z}^{3}-\mathrm{z}_{0}^{\prime 3}\right)\right\} .
\end{aligned}
$$

Example

Suppose that between two fixed boundaries $\theta=\frac{\pi}{4}$ and $\theta=-\frac{\pi}{4}$, there is twodimensional liquid motion due to a source of strength m at the point $(a, 0)$ and an equal sink at the point $(b, 0)$.

Yadanabon University Research Journal, 2019, Vol-10, No. 1

Figure 9
Consider the transformation $Z=z^{2}$, from xy-plane to $\xi \eta$-plane, where $z=r e^{i \theta}$ and $Z=R e^{i \Theta}$.

Hence the boundaries $\theta= \pm \frac{\pi}{4}$ in the z-plane transform to $\Theta= \pm \frac{\pi}{2}$, the imaginary axis of Z-plane. The points $\mathrm{A}(\mathrm{a}, 0)$ and $\mathrm{B}(\mathrm{b}, 0)$ transform to $\mathrm{A}^{\prime}\left(\mathrm{a}^{2}, 0\right)$ and $\mathrm{B}^{\prime}\left(\mathrm{b}^{2}, 0\right)$ respectively. Since the source transforms to an equal source at A^{\prime} and the sink transforms to an equal sink at B^{\prime}, the image system with respective to imaginary axis in Z-plane consists of a source of strength m at $A^{\prime \prime}\left(-a^{2}, 0\right)$ and a sink of strength $-m$ at $B^{\prime \prime}\left(-b^{2}, 0\right)$.

Therefore, the complex potential for this motion is

$$
\begin{aligned}
\mathrm{W} & =-\mathrm{m} \log \left(\mathrm{Z}-\mathrm{a}^{2}\right)+\mathrm{m} \log \left(\mathrm{Z}-\mathrm{b}^{2}\right)-\mathrm{m} \log \left(\mathrm{Z}+\mathrm{a}^{2}\right)+\mathrm{m} \log \left(\mathrm{Z}+\mathrm{b}^{2}\right) \\
& =-\mathrm{m} \log \left(\mathrm{Z}^{2}-\mathrm{a}^{4}\right)+\mathrm{m} \log \left(\mathrm{Z}^{2}-\mathrm{b}^{4}\right) .
\end{aligned}
$$

By using the transformation,

$$
\begin{aligned}
\mathrm{W}= & -\mathrm{m} \log \left(\mathrm{z}^{4}-\mathrm{a}^{4}\right)+\mathrm{m} \log \left(\mathrm{z}^{4}-\mathrm{b}^{4}\right) \\
=- & \mathrm{m} \log \left(\mathrm{r}^{4} \cos 4 \theta-\mathrm{a}^{4}+\mathrm{ir}^{4} \sin 4 \theta\right) \\
& +\mathrm{m} \log \left(\mathrm{r}^{4} \cos 4 \theta-\mathrm{b}^{4}+\mathrm{ir}^{4} \sin 4 \theta\right) \\
\psi=- & \mathrm{m}\left[\tan ^{-1} \frac{\mathrm{r}^{4} \sin 4 \theta}{\mathrm{r}^{4} \cos 4 \theta-\mathrm{a}^{4}}-\tan ^{-1} \frac{\mathrm{r}^{4} \sin 4 \theta}{\mathrm{r}^{4} \cos 4 \theta-\mathrm{b}^{4}}\right] .
\end{aligned}
$$

Thus the stream function of two-dimensional motion due to a source of strength m at $(a, 0)$ and an equal magnitude of sink at $(b, 0)$ is

$$
\begin{aligned}
& -m \tan ^{-1} \frac{r^{4}\left(a^{4}-b^{4}\right) \sin 4 \theta}{r^{8}-r^{4}\left(a^{4}+b^{4}\right) \cos 4 \theta+a^{4} b^{4}} . \\
\frac{d W}{d z}= & -m \frac{4 z^{3}}{z^{4}-a^{4}}+m \frac{4 z^{3}}{z^{4}-b^{4}}
\end{aligned}
$$

Yadanabon University Research Journal, 2019, Vol-10, No. 1

$$
=\frac{-4 \mathrm{mr}^{3}(\cos 3 \theta+\mathrm{i} \sin 3 \theta)\left(\mathrm{a}^{4}-\mathrm{b}^{4}\right)}{\left(\mathrm{r}^{4} \cos 4 \theta-\mathrm{a}^{4}+\mathrm{ir}^{4} \sin 4 \theta\right)\left(\mathrm{r}^{4} \cos 4 \theta-\mathrm{b}^{4}+\mathrm{ir}^{4} \sin 4 \theta\right)} .
$$

The velocity at the point (r, θ) in two-dimensional liquid motion due to a source and sink is

$$
q=\left|\frac{d W}{d z}\right|=\frac{4 m r^{3}\left(a^{4}-b^{4}\right)}{\left(r^{8}-2 a^{4} r^{4} \cos 4 \theta+a^{8}\right)^{\frac{1}{2}}\left(r^{8}-2 b^{4} r^{4} \cos 4 \theta+b^{8}\right)^{\frac{1}{2}}} .
$$

4. Flow due to a Source and Sink at the Corners of Infinite Rectangle

Consider the infinite rectangle in the z-plane for which $0 \leq y \leq \pi, x \geq 0$. Use the transformation $\mathrm{t}=\cosh \mathrm{z}$, where $\mathrm{t}=\xi+\mathrm{i} \eta$ and $\mathrm{z}=\mathrm{x}+\mathrm{iy}$. Therefore, $\xi=\cosh \mathrm{x} \cos \mathrm{y}$ and $\eta=\sinh x \sin y$, where $0 \leq y \leq \pi, x \geq 0$. If $y=0$ and $0<x<\infty$, then $1<\xi<\infty$. If $x=0$ and $0 \leq y \leq \pi$, then $-1 \leq \xi \leq 1$. If $y=\pi$ and $0<x<\infty$, then $-\infty<\xi<-1$. Thus, the infinite rectangle in the z-plane for which $0 \leq y \leq \pi, x \geq 0$ into the a half of the t-plane for which η is positive.

Consider the two-dimensional irrotational motion of a liquid due to within the above infinite rectangle with a source and sink are placed at the corners $(0,0)$ and $(0, \pi)$.

Figure 10
The source transforms into an equal source at $(1,0)$ and the sink transforms into an equal sink at $(-1,0)$. The complex potential for this motion is

$$
\begin{aligned}
\mathrm{W} & =-\mathrm{m} \log (\mathrm{t}-1)+\mathrm{m} \log (\mathrm{t}+1) \\
& =-\mathrm{m} \log \frac{\cosh \mathrm{z}-1}{\cosh \mathrm{z}+1}=-2 \mathrm{~m} \log \tanh \frac{\mathrm{z}}{2} \\
& =-\lambda \log \tanh \frac{\mathrm{z}}{2}, \text { where }-2 \mathrm{~m}=-\lambda . \\
\frac{\mathrm{dW}}{\mathrm{dz}} & =-\frac{\lambda}{2} \frac{\operatorname{sech}^{2} \frac{\mathrm{z}}{2}}{\tanh \frac{\mathrm{z}}{2}}=-\frac{\lambda}{\sinh \mathrm{z}} .
\end{aligned}
$$

Yadanabon University Research Journal, 2019, Vol-10, No. 1
For the curve of equal pressure in the liquid, the velocity must be constant. Therefore,
$q^{2}=\left[-\frac{\lambda}{\sinh z}\right]^{2}=C_{1}^{2}$, where C_{1} is a constant.
$\sinh \mathrm{z} \sinh \overline{\mathrm{z}}=\mathrm{C}_{2}^{2}$
$\cosh (\mathrm{z}+\overline{\mathrm{z}})-\cosh (\mathrm{z}-\overline{\mathrm{z}})=\mathrm{C}_{2}^{2}$.
Therefore, the curves of equal pressure in the liquid are given by $\sinh ^{2} x+\sin ^{2} y=C^{2}$.

Acknowledgements

I would like to express my heartfelt gratitude to Dr Maung Maung Naing, Rector, Dr Si Si Khin, Pro-Rector and Dr Tint Moe Thuzar, Pro-Rector, Yadanabon University for their permission to carry out the research and their encouragement. And then, I am deeply indebted to Dr Mya Oo, Director(Retd), Department of Higher Education, Upper Myanmar for his valuable advices and guidance on this research paper.

References

[1] Brown, J.W., and Churchill, R.V., "Complex Variables and Applications", Sixth Edition, McGraw-Hill Inc., New York,(1996).
[2] Dr.J.M. Meyers, Dr.D.G.Fletcher. Dr. Y.Dubief., "Lift and Drag on an Airfoil", ME 123: Mechanical Engineering Laboratory II : Fluids.
[3] Milne-Thomson, L., "Theoretical Hydrodynamics", Macmillan \& Co. Ltd .,London, (1968).
[4] Milne-Thomson, L., . "Theoretical Aerodynamics"., Fourth Edition, Dover Publications, Inc., New York, (1973).
[5] Raisinghania, M. D., "Fluid Dynamics", S. Chand \& Co., Ltd., London, Ramagar, New Delhi-110055, (2010)
[6] Wilson, D.H., "Hydrodynamics", Edward Arnold (Publishers) Ltd., London, (1964).

[^0]: * Lecturer, Dr, Department of Mathematics, Yadanabon University

